Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.304
Filtrar
1.
N Engl J Med ; 390(12): 1105-1117, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507753

RESUMO

BACKGROUND: Autoantibodies against interleukin-12 (anti-interleukin-12) are often identified in patients with thymoma, but opportunistic infections develop in only some of these patients. Interleukin-12 (with subunits p40 and p35) shares a common subunit with interleukin-23 (subunits p40 and p19). In a patient with disseminated Burkholderia gladioli infection, the identification of both anti-interleukin-23 and anti-interleukin-12 prompted further investigation. METHODS: Among the patients (most of whom had thymoma) who were known to have anti-interleukin-12, we screened for autoantibodies against interleukin-23 (anti-interleukin-23). To validate the potential role of anti-interleukin-23 with respect to opportunistic infection, we tested a second cohort of patients with thymoma as well as patients without either thymoma or known anti-interleukin-12 who had unusual infections. RESULTS: Among 30 patients with anti-interleukin-12 who had severe mycobacterial, bacterial, or fungal infections, 15 (50%) also had autoantibodies that neutralized interleukin-23. The potency of such neutralization was correlated with the severity of these infections. The neutralizing activity of anti-interleukin-12 alone was not associated with infection. In the validation cohort of 91 patients with thymoma, the presence of anti-interleukin-23 was associated with infection status in 74 patients (81%). Overall, neutralizing anti-interleukin-23 was detected in 30 of 116 patients (26%) with thymoma and in 30 of 36 patients (83%) with disseminated, cerebral, or pulmonary infections. Anti-interleukin-23 was present in 6 of 32 patients (19%) with severe intracellular infections and in 2 of 16 patients (12%) with unusual intracranial infections, including Cladophialophora bantiana and Mycobacterium avium complex. CONCLUSIONS: Among patients with a variety of mycobacterial, bacterial, or fungal infections, the presence of neutralizing anti-interleukin-23 was associated with severe, persistent opportunistic infections. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Assuntos
Autoanticorpos , Síndromes de Imunodeficiência , Interleucina-23 , Infecções Oportunistas , Adulto , Humanos , Autoanticorpos/imunologia , Síndromes de Imunodeficiência/imunologia , Interleucina-12/antagonistas & inibidores , Interleucina-12/imunologia , Interleucina-23/antagonistas & inibidores , Interleucina-23/imunologia , Micoses/imunologia , Infecções Oportunistas/imunologia , Timoma/imunologia , Neoplasias do Timo/imunologia , Anticorpos Neutralizantes/imunologia , Infecções Bacterianas/imunologia
2.
J Innate Immun ; 16(1): 216-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461810

RESUMO

INTRODUCTION: Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS: In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS: We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION: This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Receptor 10 Toll-Like , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Idoso , Adulto , Receptores Toll-Like/metabolismo , Choque Séptico/imunologia , Choque Séptico/sangue , Neutrófilos/imunologia , Infecções Bacterianas/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Sepse/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética
3.
J Innate Immun ; 16(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310854

RESUMO

BACKGROUND: Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY: These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES: In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.


Assuntos
Antibacterianos , Biofilmes , Macrófagos , Biofilmes/efeitos dos fármacos , Humanos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Infecções Bacterianas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Farmacorresistência Bacteriana , Evasão da Resposta Imune
4.
Science ; 383(6686): eabm9903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422126

RESUMO

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Assuntos
Bactérias , Infecções Bacterianas , Membrana Celular , Proteínas de Ligação ao GTP , Reconhecimento da Imunidade Inata , Humanos , Citocinas/química , Tomografia com Microscopia Eletrônica , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Hidrólise , Imunidade Celular , Microscopia Crioeletrônica , Gasderminas/química , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/imunologia , Caspases Iniciadoras/química , Infecções Bacterianas/imunologia , Bactérias/imunologia
5.
Sci Adv ; 9(36): eadf9904, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672586

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) respond to infection by proliferating and generating in-demand neutrophils through a process called emergency granulopoiesis (EG). Recently, infection-induced changes in HSPCs have also been shown to underpin the longevity of trained immunity, where they generate innate immune cells with enhanced responses to subsequent microbial threats. Using larval zebrafish to live image neutrophils and HSPCs, we show that infection-experienced HSPCs generate neutrophils with enhanced bactericidal functions. Transcriptomic analysis of EG neutrophils uncovered a previously unknown function for mitochondrial reactive oxygen species in elevating neutrophil bactericidal activity. We also reveal that driving expression of zebrafish C/EBPß within infection-naïve HSPCs is sufficient to generate neutrophils with similarly enhanced bactericidal capacity. Our work suggests that this demand-adapted source of neutrophils contributes to trained immunity by providing enhanced protection toward subsequent infections. Manipulating demand-driven granulopoiesis may provide a therapeutic strategy to boost neutrophil function and treat infectious disease.


Assuntos
Infecções Bacterianas , Células-Tronco Hematopoéticas , Imunidade Treinada , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/microbiologia , Animais , Peixe-Zebra , Larva/imunologia , Larva/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Bacterianas/imunologia
6.
Front Immunol ; 14: 1173605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435074

RESUMO

Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1ß transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-ß. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1ß transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-ß-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1ß mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1ß. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections.


Assuntos
Infecções Bacterianas , Interferon beta , Interleucina-1beta , Infecções por Paramyxoviridae , Superinfecção , Humanos , Citocinas , Metapneumovirus , Transcrição Gênica , Infecções Bacterianas/imunologia , Infecções por Paramyxoviridae/imunologia
7.
Kidney Int ; 104(2): 236-238, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37479384

RESUMO

Like most epithelial organs, the bladder and kidney can be directly accessed by bacteria evolved for invasion. Epithelia and immune cells attempt to stymie this infection with biophysical and chemical mechanisms. Goldspink et al. connected the Na+ gradient in the kidney medulla with an immune defense mounted by dead cells (namely, the explosive death of neutrophils and macrophages), resulting in extracellular DNA traps. The pathway from Na+ concentration to immune death is depicted.


Assuntos
Armadilhas Extracelulares , Imunidade Inata , Macrófagos , Neutrófilos , Sistema Urinário , Sistema Urinário/imunologia , Neutrófilos/imunologia , Macrófagos/imunologia , Rim , Sódio , Morte Celular , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Animais , Camundongos , Infecções Urinárias/imunologia , Infecções Bacterianas/imunologia
9.
Front Immunol ; 14: 1142488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936949

RESUMO

Creatine kinase (CK) is an enzyme that regulates adenosine triphosphate (ATP) metabolism to maintain energy homeostasis. Although CK has been reported to be involved in pathogen infection, the immune function of CK remains elusive. In this study, we identified two muscle-type CK from the teleost tongue sole Cynoglossus semilaevis (designated CsCKM-1 and CsCKM-2). Bacterial infection modulated CsCKM-1/2 expression in tongue sole tissues and induced the release of CsCKM-1/2 into serum. Recombinant CsCKM-1/2 (rCsCKM-1/2) exhibited robust kinase activity and bound to bacterial pathogens and pathogen-associated molecular patterns. rCsCKM-1/2 also bound to tongue sole peripheral blood leukocytes (PBLs) and promoted PBLs to uptake bacterial pathogens, inhibit bacterial proliferation, and express proinflammatory cytokines. When co-expressed in HEK293T cells, CsCKM-1/2 were found to interact with the leucine rich domain of toll-like receptor 2 (TLR2). The presence of TLR2 antagonist significantly reduced CsCKM-1/2-induced immune response and antibacterial effect. Taken together, these results indicated that tongue sole creatine kinases function as damage-associated molecular pattern (DAMP) molecules and play an important role in antimicrobial immunity via TLR2.


Assuntos
Infecções Bacterianas , Creatina Quinase , Peixes , Receptor 2 Toll-Like , Animais , Humanos , Bactérias , Creatina , Creatina Quinase/imunologia , Células HEK293 , Receptor 2 Toll-Like/imunologia , Infecções Bacterianas/imunologia
10.
Nature ; 615(7953): 705-711, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922598

RESUMO

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Assuntos
Sacarose , Edulcorantes , Linfócitos T , Animais , Camundongos , Sacarose/análogos & derivados , Edulcorantes/administração & dosagem , Edulcorantes/efeitos adversos , Edulcorantes/farmacologia , Edulcorantes/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Inocuidade dos Alimentos , Sinalização do Cálcio/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Infecções Bacterianas/imunologia , Neoplasias/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
11.
Recurso na Internet em Inglês, Espanhol, Português | LIS - Localizador de Informação em Saúde | ID: lis-49231

RESUMO

Um novo relatório da Organização Mundial da Saúde (OMS) revela altos níveis de resistência em bactérias que causam sepse, além de aumentar a resistência a tratamentos de várias bactérias que causam infecções comuns entre a população, com base em dados relatados por 87 países em 2020.


Assuntos
Antibacterianos/análise , Infecções Bacterianas/imunologia , Humanos , Farmacorresistência Bacteriana/imunologia
12.
Science ; 378(6617): 290-295, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264814

RESUMO

Adaptations to infectious and dietary pressures shape mammalian physiology and disease risk. How such adaptations affect sex-biased diseases remains insufficiently studied. In this study, we show that sex-dependent hepatic gene programs confer a robust (~300%) survival advantage for male mice during lethal bacterial infection. The transcription factor B cell lymphoma 6 (BCL6), which masculinizes hepatic gene expression at puberty, is essential for this advantage. However, protection by BCL6 protein comes at a cost during conditions of dietary excess, which result in overt fatty liver and glucose intolerance in males. Deleting hepatic BCL6 reverses these phenotypes but markedly lowers male survival during infection, thus establishing a sex-dependent trade-off between host defense and metabolic systems. Our findings offer strong evidence that some current sex-biased diseases are rooted in ancient evolutionary trade-offs between immunity and metabolism.


Assuntos
Infecções Bacterianas , Evolução Biológica , Fígado Gorduroso , Adaptação ao Hospedeiro , Fígado , Proteínas Proto-Oncogênicas c-bcl-6 , Animais , Masculino , Camundongos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Deleção de Genes , Fatores Sexuais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia
13.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078113

RESUMO

The innate immune system is the first line of defense against bacterial and viral infections and sterile inflammation through the recognition of pathogen-associated molecular patterns (PAMPs) as well as danger-associated molecular patterns (DAMPs) by pathogen-recognition receptors (PRRs), and produces proinflammatory and antiviral cytokines and chemokines [...].


Assuntos
Imunidade Inata , Alarminas , Infecções Bacterianas/imunologia , Citocinas , Humanos , Receptores de Reconhecimento de Padrão , Viroses/imunologia
14.
Fish Shellfish Immunol ; 127: 982-990, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870743

RESUMO

Neutrophils can capture and kill pathogens by releasing neutrophils extracellular traps (NETs), which play critical roles in anti-microbial infection in mammals; however, the mechanisms involved in NETs formation and its role in anti-bacterial infection in teleost fish remains largely unknown. In this study, to explore the function of NETs in turbot, we established an in vitro bacterial infection model in head kidney derived neutrophils, and found that the haemolysin over-expressed Edwardsiella piscicida (ethA+) could induce a robust phenotype of NETs, compared with that in wild type or ethA mutant (ethA+ -ΔethA) strains. Besides, the NETosis was mediated by ethA+ -induced pyroptosis, and arms the ability of bacterial killing in neutrophils of turbot. Moreover, we found that neutrophils elastase (NE) might involves in this pyroptotic signaling, rather than inflammatory Smcaspase. Taken together, this study reveals the important role of pyroptosis in NETs formation in turbot neutrophils, suggesting that NETs formation is a critical immune response during bacterial infection in teleost fish.


Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Linguados , Piroptose , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Linguados/imunologia , Linguados/microbiologia , Neutrófilos
15.
Immunol Cell Biol ; 100(7): 529-546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471730

RESUMO

To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.


Assuntos
Apresentação de Antígeno , Proteínas Citotóxicas Formadoras de Poros , Animais , Infecções Bacterianas/imunologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Citotóxicas Formadoras de Poros/imunologia , Viroses/imunologia
16.
Fish Shellfish Immunol ; 124: 313-323, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421574

RESUMO

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that play a critical role in innate immune responses against pathogens. In the present study, a fish-specific TLR14 was identified and characterized from Monopterus albus (named MaTLR14), which consisted of a 2658 bp open reading frame encoding a protein of 885 amino acids. Phylogenetic analysis revealed that MaTLR14 belong to the TLR1 subfamily and shared the highest similarity to Paralichthys olivaceus TLR14. Immunohistochemistry assay showed that MaTLR14 mainly located in intestinal epithelial cells of hindgut. Immunofluorescence revealed that MaTLR14 largely localized to the intracellular region and partially co-localized with cell membrane of HeLa cells. The expression levels of MaTLR14 were upregulated in the liver, spleen, foregut and hindgut post infection with Aeromonas hydrophila. When stimulated with LPS and Flagellin, the MaTLR14 expression was elevated in isolated peripheral blood leukocytes. Further studies showed that recombinant MaTLR14-LRR could bind to both the gram-negative and gram-positive bacteria and cause agglutination. Subsequently, the signaling pathway of MaTLR14 was investigated. Confocal microscopy and co-immunoprecipitation assay demonstrated that MaTLR14 recruited MyD88 as adaptor. When overexpressed, MaTLR14 augmented the expression of TRAF6 and phosphorylation of ERK and p65, activated NF-κB and AP-1 and elicited the expression of il-6 and tnf-α. Collectively, MaTLR14 plays an important role in the microorganism recognition and signaling transduction.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Proteínas de Peixes , Smegmamorpha , Receptores Toll-Like , Sequência de Aminoácidos , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Imunidade Inata/genética , Filogenia , Smegmamorpha/imunologia , Receptores Toll-Like/imunologia
17.
Clin Exp Immunol ; 209(1): 72-82, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35467728

RESUMO

Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.


Assuntos
Infecções Bacterianas , Eosinófilos , Micoses , Viroses , Infecções Bacterianas/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Humanos , Imunidade Inata , Micoses/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Viroses/imunologia
19.
Mol Immunol ; 143: 105-113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114487

RESUMO

The fusion protein DnaJ-ΔA146Ply is protective against pneumococcal infections in mice. However, we found that immunized IL-4-/- mice showed significant lower survival rates and higher bacterial loads than did wild-type (WT) mice after being challenged. We explored the role of IL-4 in the protective immunity conferred by DnaJ-ΔA146Ply. Our results showed that there were no significant differences in antibody titers between immunized WT mice and IL-4-/- mice. The bacterial loads of passively immunized IL-4-/- mice were significantly higher than those of WT mice, while mice immunized with anti-DnaJ-ΔA146Ply serum from WT and IL-4-/- mice showed similar capacity for bacterial clearance. DnaJ-ΔA146Ply-dependent phagocytosis of IL-4-/- neutrophils was significant decreased compared with that of WT neutrophils. The levels of Syk and phosphor-Syk in IL-4-/- neutrophils were decreased compared with those in WT neutrophils. Additionally, Splenocytes in IL-4-/- mice triggered significantly higher levels of IFN-γ and IL-17A than did splenocytes in WT mice. Taken together, our findings illustrate that IL-4 deficiency does not influence the antibody production or antibody effect, but change the cellular immune response induced by DnaJ-ΔA146Ply. Additionally, IL-4 can enhance the antibody-dependent phagocytosis of neutrophils partially by activating Syk and participate in the protective immunity induced by DnaJ-ΔA146Ply.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Interleucina-4/metabolismo , Mutação/genética , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Formação de Anticorpos , Infecções Bacterianas/imunologia , Carga Bacteriana , Feminino , Imunidade , Imunização , Inflamação/patologia , Interferon gama/metabolismo , Interleucina-4/deficiência , Pulmão/patologia , Camundongos Endogâmicos C57BL , Testes de Neutralização , Neutrófilos/imunologia , Fagocitose , Infecções Pneumocócicas/prevenção & controle , Quinase Syk/metabolismo
20.
Sci Rep ; 12(1): 2582, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173190

RESUMO

There is limited data on host-specific genetic determinants of susceptibility to bacterial and viral infections. Genome-wide association studies using large population cohorts can be a first step towards identifying patients prone to infectious diseases and targets for new therapies. Genetic variants associated with clinically relevant entities of bacterial and viral infections (e.g., abdominal infections, respiratory infections, and sepsis) in 337,484 participants of the UK Biobank cohort were explored by genome-wide association analyses. Cases (n = 81,179) were identified based on ICD-10 diagnosis codes of hospital inpatient and death registries. Functional annotation was performed using gene expression (eQTL) data. Fifty-seven unique genome-wide significant loci were found, many of which are novel in the context of infectious diseases. Some of the detected genetic variants were previously reported associated with infectious, inflammatory, autoimmune, and malignant diseases or key components of the immune system (e.g., white blood cells, cytokines). Fine mapping of the HLA region revealed significant associations with HLA-DQA1, HLA-DRB1, and HLA-DRB4 locus alleles. PPP1R14A showed strong colocalization with abdominal infections and gene expression in sigmoid and transverse colon, suggesting causality. Shared significant loci across infections and non-infectious phenotypes in the UK Biobank cohort were found, suggesting associations for example between SNPs identified for abdominal infections and CRP, rheumatoid arthritis, and diabetes mellitus. We report multiple loci associated with bacterial and viral infections. A better understanding of the genetic determinants of bacterial and viral infections can be useful to identify patients at risk and in the development of new drugs.


Assuntos
Infecções Bacterianas/epidemiologia , Genes MHC da Classe II , Genes MHC Classe I , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Viroses/epidemiologia , Adulto , Idoso , Bactérias/isolamento & purificação , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Bancos de Espécimes Biológicos/estatística & dados numéricos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Viroses/genética , Viroses/imunologia , Viroses/patologia , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...